
PixelSurface

a dynamic world of pixels for Unity

Oct 19, 2015

Joe Strout

joe@LuminaryApps.com

Overview
PixelSurface is a small class library for Unity that lets you manipulate 2D graphics on
the level of individual pixels. You can efficiently draw lines, rectangles, and ellipses in
full 24-bit color, as well as draw a texture (or just a portion of a texture).

But in addition to these standard pixel operations, PixelSurface also has built-in support
for “live” (dynamic) pixels. These are pixels in motion — efficiently tracked, combined,
and blitted for maximum performance. This makes it easy to dig tunnels, make
destructible terrain, set things on fire, pour sand, and much more.

Namespace, Source Files, & Classes
Everything you need is defined in two files, PixelSurface.cs and LivePixel.cs. These
contain the two primary classes, PixelSurface and LivePixel, both within a “PixSurf”
namespace. (So, you may want to add “using PixSurf;” to the top of any file where you
access these classes.)

PixelSurface is the main workhorse of the system. It is a MonoBehaviour which creates
the pixel tiles, manages all the live pixels, and provides public methods for all the
different kinds of drawing you might need to do.

LivePixel is a base class for any live (dynamic) pixels you define. It is not a
MonoBehaviour, though in some ways it acts like one: you can override its Start and
Update methods to execute custom code at the appropriate times. But LivePixel
objects are designed to be considerably more lightweight than regular Unity objects,
since a typical project may have many thousands of live pixels at once.

PixelSurface also defines one contained struct, PixelSurface.Stats. This is a simple
container for several statistics (live pixel count, etc.) that you may want for debugging or
performance-tweaking purposes.

Included Demo
The PixelSurface package includes a test scene that illustrates use of PixelSurface and
LivePixel. It is divided into a number of small scripts that do particular functions:
DrawStuff, DropBomb, DropSand, MakeFire, and so on. It also includes several
subclasses of LivePixel demonstrating different pixel behaviors (fire, snow, physics-like
particle, etc.). Finally, the PixSurfDemo script brings it all together, automatically
enabling or disabling the other demo components according as selected by the GUI.

You don’t need to include any of those demo scripts in your own projects, though of
course you are welcome to use or adapt them as you wish.

PixelSurface Manual! 2 / 10

Getting Started
To create a new PixelSurface in your scene is simple:

1. Create an empty GameObject, positioned where you want the lower-left corner of
the surface to appear in the world.

2. Add a PixelSurface component.

3. Adjust the tile PixelSurface properties
in the inspector as desired.

The PixelSurface component inspector is
shown at right. Let’s examine each of
these properties, starting at the bottom
and working our way up.

Start With Test Pattern indicates whether you want the pixel surface to be initialized to
a fractal pattern of triangles (checked), or to clear (unchecked). The test pattern is often
useful because it can be hard to position a clear (and therefore invisible) pixel surface.

Shader lets you select the shader that should be used for drawing the surface. If this is
null, then Sprites/Default (the standard sprite shader) will be used.

Pixels Per Unit defines how pixels are mapped to game world units. The default value
of 100 means that every 100 pixels is 1 unit across.

Total Width and Total Height define the size of the pixel surface, in pixels.

To explain Tile Width and Tile Height, we must first explain that for performance
reasons, a pixel surface is normally divided into multiple smaller tiles. This limits the
amount of texture data that must be updated at once when something changes, and for
parts of the pixel surface that happen to be all the same color, often lets us avoid using
a texture at all. However, we pay a price in draw calls: each unique tile is its own
material, and therefore a separate draw call. By adjusting these parameters, you can
control the balance between efficient texture updating and draw calls. If you don’t want
tiles at all, simply set the tile size equal to the total size.

Once you’ve set the properties as desired, simply run your scene, and you have a
working pixel surface! The Start With Test Pattern option is recommended at first until
you have some code ready to draw something else.

Drawing to a PixelSurface
This section provides an overview of the drawing methods you can use on a
PixelSurface. For full details, see the Reference section.

The Reset method clears all pixels and data, returning the PixelSurface to pristine
condition; it should also be called after changing the tile or total size. The Clear method

PixelSurface Manual! 3 / 10

is similar, but does not rebuild the tiles or clear all the internal
data; Clear can also take an optional parameter to clear the
surface to a specified color.

Shapes can be drawn with FillRect and FillEllipse. 1-pixel-
thick lines are drawn with DrawLine. You can also draw a
texture, or any portion thereof, into any part of the surface with
DrawTexture; note that if size of the source and destination
rects are not the same, then the texture will simply be scaled as
it is drawn. Also, note that any texture drawn has to be have
“Read/Write Enabled” in the import settings (see example at
right).

Individual pixels can be set with SetPixel, and read with
GetPixel. Note that GetPixel has an “includeLive” parameter
that controls whether you want to include live pixels when
reading the color. By default, live pixels are ignored, and what
is returned is the color of the static pixel at the given location.
But if you pass true for includeLive, and there are any live pixels
currently at that pixel location, then you will get the color of the
topmost live pixel instead. Note that SetPixel has no such
option; it always sets the color of the static pixel, even if that is
currently under one or more live pixels.

FloodFill, as noted before, does a paint-bucket fill starting at a
specified point.

Working with Live Pixels
A “live pixel” is an instance of LivePixel (or some subclass you define). Every live pixel
is attached to a PixelSurface at some specific pixel position, and has a color. Multiple
live pixels can occupy the same position; the set of live pixels at one position is called a
“stack,” and only the topmost (most recently created or moved) pixel in each stack is
actually drawn.

You create a live pixel by calling CreateLivePixel on the pixel surface. This is a generic
method that takes the specific type (which must be LivePixel or some subclass) that you
want to create. Note that this method may actually reuse a previously killed live pixel
from a recycling pool rather than instantiating a new one. In either case, the Start
method is called; this is a virtual method, which you can override in your subclass to
perform initialization.

Then, on every frame, the Update method is called for every live pixel on every active
PixelSurface. The Update method is your chance to change the position or color of the
live pixel; any such changes will be applied at the end of the frame. The Update
method is called only once per frame, no matter how you move the pixel around.

PixelSurface Manual! 4 / 10

When you are done with a live pixel, you should tell it to die. There are two ways to do
this. The standard Die method on LivePixel first sets the static color of the PixelSurface
at that position to the live pixel’s color (unless the live pixel’s color is clear), and then
recycles the live pixel. The DieClear method recycles the pixel without applying its
color to the surface.

If you want to quickly clear all the live pixels at a given pixel location, the
ClearLivePixels method on PixelSurface will do the job.

Other Methods
PixelSurface contains several methods for converting between coordinate systems.
PixelPosAtWorldPos returns the pixel position at a given world position, and
WorldPosAtPixelPos converts the other way. These are very handy when combining a
pixel surface with sprites (since sprites use world positions).

There is also PixelPosAtScreenPos to convert from a screen position (for example,
what you get from Input.mousePosition) to a pixel position. Note that this function uses
a ray-cast onto the pixel surface for maximum accuracy, but means that it can’t return
an answer at all if the given screen position is out of bounds (but the function has a
return value to let you know when this is the case). Given a pixel position, InBounds
provides a quick way to see if it’s within the range of pixel positions for the surface.

The GetStats method returns a data structure providing various statistics about the
pixel surface: the number of live pixel “stacks” (i.e. pixel locations that have one or more
live pixels), and the total number of live pixels; as well as information about the recycling
pools. Note that gathering these statistics does take some time, so you should only call
GetStats when you really need it, and probably not in production code.

Finally, the ReduceRAM method is there to reduce memory usage when RAM is getting
tight (for example, if you have received a low-memory warning on a mobile device). It
drains the recycle pools, and may release other cached or temporary objects. There is
generally a performance cost for doing this, so it should only be called when you really
need the memory back. (Note that when a PixelSurface is destroyed, all that memory is
freed anyway.)

PixelSurface Manual! 5 / 10

Reference
void Clear ()

Clear the whole surface (to Color.clear). Also clears all live pixels.

void Clear (Color color)

Clear the entire surface to the given color. Also clears all live pixels.

Parameters
color	

 Color to fill the surface with.

void ClearLivePixels (int x, int y)

Clear all live pixels at the given location.

Parameters
x	

 The x coordinate.
y	

 The y coordinate.

T CreateLivePixel< T > (int x, int y, Color color = default(Color))

Create (or recycle) a LivePixel at the given position. The new pixel is attached to this pixel
surface at the given position, and its Start method is called so it can initialize itself.

Returns
The newly created (or recycled) live pixel.
Parameters
x	

 The x coordinate.
y	

 The y coordinate.
color	

 Optional color to set.
Template Parameters
T	

 Specific type of LivePixel to create.

void DrawLine (Vector2 p1, Vector2 p2, Color color)

Draw a 1-pixel-thick line between the given points in the surface.

PixelSurface Manual! 6 / 10

Parameters
p1	

 Pixel coordinates of one end of the line.
p2	

 Pixel coordinates of the other end of the line.
color	

 Color to draw.

void DrawLine (int x1, int y1, int x2, int y2, Color color)

Draw a 1-pixel-thick line between the given points in the surface.

Parameters
x1	

 The first x value.
y1	

 The first y value.
x2	

 The second x value.
y2	

 The second y value.
color	

 Color to draw.

void DrawTexture (Texture2D src, Rect destRect, Rect srcRect)

Draw a texture into the surface. You can draw any rectangular portion of the source texture into
any rectangular area of the PixelSurface.

Parameters
src	

 Source texture to draw.
destRect	

 Where to draw the texture in this surface.
srcRect	

 What part of the source texture to draw.

void DrawTexture (Texture2D src, Rect destRect)

Draw a texture into the surface. This version draws the entire source texture into any rectangular
area of the PixelSurface.

Parameters
src	

 Source texture to draw.
destRect	

 Where to draw the texture in this surface.

void DrawTexture (Texture2D src)

PixelSurface Manual! 7 / 10

Draw a texture into the surface. This version fills the entire PixelSurface with the entire given
texture.

Parameters
src	

 Source texture to draw.

void FillEllipse (Rect rect, Color color)

Fill an elliptical region with a color. Note that the coordinates in the bounds rectangle are
truncated to the next lower integer.

Parameters
rect	

 Bounds rect within which to inscribe an axis-oriented ellipse.
color	

 Fill color.

void FillRect (Rect rect, Color color)

Fill a rectangular region with a color. Note that the coordinates in the rectangle are truncated to
the next lower integer.

Parameters
rect	

 Rect to fill.
color	

 Color to fill.

Color GetPixel (int x, int y, bool includeLive = false)

Get the color of the specified pixel. If out of bounds, returns Color.clear. Normally this method
ignores any live pixels at the specified position, but if includeLive=true, then you will instead get
the color of the topmost live pixel.

Returns
Pixel color at the given x,y.
Parameters
x	

 The x coordinate.
y	

 The y coordinate.
includeLive	

 If set to true include live pixels.

Color GetPixel (Vector2 pixelPos, bool includeLive = false)

PixelSurface Manual! 8 / 10

Get the color of the specified pixel. If out of bounds, returns Color.clear. Normally this method
ignores any live pixels at the specified position, but if includeLive=true, then you will instead get
the color of the topmost live pixel.

Returns
Pixel color at the given pixel position (rounded to nearest integers).
Parameters
pixelPos	

 Pixel position.
includeLive	

 If set to true include live.

Stats GetStats ()

Get the current statistics for this pixel surface, for debugging or analysis (or just plain curiosity).

Returns
The stats.

bool InBounds (Vector2 pixelPos)

Return whether the given pixel position is within bounds of this pixel surface.

Returns
true, if within bounds, false otherwise.
Parameters
pixelPos	

 Pixel position of interest.

bool PixelPosAtScreenPos (Vector3 screenPos, out Vector2 pixelPos, Camera camera = null)

Get the pixel position at a given screen position (relative to the given camera, or Camera.main if
none is specified). Handy for finding the pixel position clicked, for example.

Returns
true, if screen position is in bounds; false otherwise.
Parameters
screenPos	

 Screen position of interest.
pixelPos	

 Receives the corresponding pixel position.
camera	

 Optional camera of interest (uses Camera.main by default).

Vector2 PixelPosAtWorldPos (Vector3 worldPos)

PixelSurface Manual! 9 / 10

Get the pixel position at a given world position (ignoring the local Z direction).

Returns
Pixel position corresponding to the given world position.
Parameters
worldPos	

 World position of interest.

void ReduceRAM ()

Reduce our current RAM usage as much as we can by freeing recycled objects, etc.

void Reset ()

Reset this pixel surface, clearing all pixel data.

void SetPixel (int x, int y, Color color)

Set the static pixel color at the given position. Note that if there are any live pixels at this
position, those are ignored in this operation; you're only setting the static color here.

Parameters
x	

 The x coordinate.
y	

 The y coordinate.
color	

 Color to set.

Vector3 WorldPosAtPixelPos (Vector2 pixelPos)

Get the position in the world of a given pixel position.

Returns
World coordinates of given pixel position.
Parameters
pixelPos	

 Pixel position of interest.

PixelSurface Manual! 10 / 10

